Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Recent advances in Large Language Models (LLMs) have led to remarkable progresses in medical consultation.However, existing medical LLMs overlook the essential role of Electronic Health Records (EHR) and focus primarily on diagnosis recommendation, limiting their clinical applicability. We propose DiaLLM, the first medical LLM that integrates heterogeneous EHR data into clinically grounded dialogues, enabling clinical test recommendation, result interpretation, and diagnosis prediction to better align with real-world medical practice. To construct clinically grounded dialogues from EHR, we design a Clinical Test Reference (CTR) strategy that maps each clinical code to its corresponding description and classifies test results as “normal” or “abnormal”. Additionally, DiaLLM employs a reinforcement learning framework for evidence acquisition and automated diagnosis. To handle the large action space, we introduce a reject sampling strategy to reduce redundancy and improve exploration efficiency. Furthermore, a confirmation reward and a class-sensitive diagnosis reward are designed to guide accurate diagnosis prediction.Extensive experimental results demonstrate that DiaLLM outperforms baselines in clinical test recommendation and diagnosis prediction. Our code is available at Github.more » « lessFree, publicly-accessible full text available September 28, 2026
- 
            Despite recent progress in Graph Neural Networks (GNNs), explaining predictions made by GNNs remains a challenging and nascent problem. The leading method mainly considers the local explanations, i.e., important subgraph structure and node features, to interpret why a GNN model makes the prediction for a single instance, e.g. a node or a graph. As a result, the explanation generated is painstakingly customized at the instance level. The unique explanation interpreting each instance independently is not sufficient to provide a global understanding of the learned GNN model, leading to the lack of generalizability and hindering it from being used in the inductive setting. Besides, training the explanation model explaining for each instance is time-consuming for large-scale real-life datasets. In this study, we address these key challenges and propose PGExplainer, a parameterized explainer for GNNs. PGExplainer adopts a deep neural network to parameterize the generation process of explanations, which renders PGExplainer a natural approach to multi-instance explanations. Compared to the existing work, PGExplainer has better generalization ability and can be utilized in an inductive setting without training the model for new instances. Thus, PGExplainer is much more efficient than the leading method with significant speed-up. In addition, the explanation networks can also be utilized as a regularizer to improve the generalization power of existing GNNs when jointly trained with downstream tasks. Experiments on both synthetic and real-life datasets show highly competitive performance with up to 24.7% relative improvement in AUC on explaining graph classification over the leading baseline.more » « less
- 
            Uncovering rationales behind predictions of graph neural networks (GNNs) has received increasing attention over recent years. Instance-level GNN explanation aims to discover critical input elements, such as nodes or edges, that the target GNN relies upon for making predictions. Though various algorithms are proposed, most of them formalize this task by searching the minimal subgraph, which can preserve original predictions. However, an inductive bias is deep-rooted in this framework: Several subgraphs can result in the same or similar outputs as the original graphs. Consequently, they have the danger of providing spurious explanations and failing to provide consistent explanations. Applying them to explain weakly performed GNNs would further amplify these issues. To address this problem, we theoretically examine the predictions of GNNs from the causality perspective. Two typical reasons for spurious explanations are identified: confounding effect of latent variables like distribution shift and causal factors distinct from the original input. Observing that both confounding effects and diverse causal rationales are encoded in internal representations,we propose a new explanation framework with an auxiliary alignment loss, which is theoretically proven to be optimizing a more faithful explanation objective intrinsically. Concretely for this alignment loss, a set of different perspectives are explored: anchor-based alignment, distributional alignment based on Gaussian mixture models, mutual-information-based alignment, and so on. A comprehensive study is conducted both on the effectiveness of this new framework in terms of explanation faithfulness/consistency and on the advantages of these variants. For our codes, please refer to the following URL link:https://github.com/TianxiangZhao/GraphNNExplanationmore » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available